您的位置:主页 > 人才 > 专家学者 > >正文

教授:国家“千人计划”特聘教授许天福

2015-09-23 来源:吉林大学环境与资源学院 企业名称: 许天福 教授

简介

许天福教授现为吉林大学环境与资源学院地下资源与废物处置研究所所长,博士生导师,学科专业为地下水科学与工程,国家“千人计划”特聘教授、美国劳伦斯伯克利国家实验室地球科学部兼职研究员。1984年毕业于长春地质学院水文地质工程地质专业(学士学位),先后获得荷兰Delft国际水文和环境学院硕士学位和西班牙格鲁尼亚大学博士学位。在地下多相流体运动和地球化学运移耦合的理论和模拟研究方面取得一系列重要成果,提出了综合反映地质条件、地热传导、地球化学和流体动力条件的新的概念模型,独立开发了模拟地下多相流体运动和地球化学运移耦合过程和机理的计算机程序TOUGHREACT,运用于二氧化碳和核废料的地质处理、污染物运移、地热能的开发利用等,并越来越多的用于石油应用。发表学术论文50余篇,文章被引用千余次。
电话:0431-88502773
邮箱:tianfu.good@Gmail.com
个人主页:http://cer.jlu.edu.cn/cer/do/bencandy_form.php?mid=5&id=25918

教育经历

1980.9-1984.7 学士学位 中国 吉林大学 水文地质专业
1984.10-1987.7 硕士学位 中国 吉林大学 水文地质专业
1991.10-1993.5 硕士学位 荷兰 Delft国际水力与环境工程学院 水文学
1993.6-1996.12 博士学位 西班牙 La Coru?a大学 土木工程
1996.12-1998.11 博士后 美国 劳伦斯国家实验室 地球科学部  

工作经历

1987.8-1991.10 主任科,工程师 中国 国土资源部
1998.11-2001.8 助理研究员 美国 劳伦斯国家实验室地球科学部(Earth   Sciences Division, Lawrence Berkeley National Laboratory,USA)
2001.8-2006.6 副研究员 美国 劳伦斯国家实验室地球科学部
2006.6-现在 研究员   美国   劳伦斯国家实验室地球科学部
2010-现在 国家“千人计划”特聘教授 中国 吉林大学  

研究方向

地下水多组份反应溶质运移;
水-岩相互作用数值模拟;
地下水污染物运移和修复模拟;
CO2和核废料地质储置;
地热能开发利用  

学术论文

(1)Xu, T., Kharaka, Y.K., Doughty, C., Freifeld, B.M., Daley, T.M., Reactive transport modeling to study changes in water chemistry induced by co2 injection at the frio-i brine pilot, Chemical Geology, In press, 2010. 
(2)Apps, J.A., Zheng, L., Zhang, Y., Xu, T., Birkholzer, J.L., eva luation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage, Transport in Porous Media, DOI 10.1007/s11242-009-9509-8, 2009.
(3)Zheng, L., Apps, J.A., Zhang, Y., Xu, T., Birkholzer, J., On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chemical Geology, v. 268, p. 281-297, 2009.
(4)Samper, J., T. Xu, C. Yang, A sequential partly iterative approach for multicomponent reactive transport with CORE2D, Computational Geosciences, v. 13, p. 301-316, 2009.
(5)Xu, T., Rose, P., Fayer, S., Pruess, K., On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent, Geofluid, v. 9, p. 167-177, 2009.
(6)Zhang, W., Li, Y., Xu, T., Cheng, H., Zheng, Y., Xiong, P., Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China, Greenhouse Gas Control Technologies, v3(2), p. 161-180, 2009.
(7)Gu, C., F. Maggi, W. J. Riley, G. M. Hornberger, T. Xu, C. M. Oldenburg, N. Spycher, N. L. Miller, R. T. Venterea, and C. I. Steefel, Aqueous and Gaseous Nitrogen Losses Induced by Fertilizer Application, J. Geophys. Res., doi:10.1029/2008JG000788, 2009. 
(8)Xu, T., Incorporation of aqueous reaction kinetics and biodegradation into TOUGHREACT: Application of a multi-region model to hydrobiogeochemical transport of denitrification and sulfate reduction, Vadose Zone Journal, February issue, p. 305-315, 2008. doi: 10.2136/vzj2006.0130, 2007.
(9)Xu, T., R. Senger, and S. Finsterle, Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effects, Applied Geochemistry, v.23, p. 3423-3433, 2008.
(10)Maggi, F., C. Gu, W. J. Riley, G.M. Hornberger, R.T. Venterea, T. Xu, N. Spycher, C.I. Steefel, and N.L. Miller, Mechanistic modeling of biogeochemical nitrogen cycling: model development and application in an agricultural system, J. Geophys. Res. (Biogeosciences), 113, doi:10.1029/2007JG000578, 2008.
(11)Finsterle, S., C. Doughty, M.B. Kowalsky, G.J. Moridis, L. Pan, T. Xu, Y. Zhang, and K. Pruess, Advanced vadose zone simulation using TOUGH, Vadose Zone Journal, v. 2008-7, p. 601-609, 2008.
(12)Birkle, P., K. Pruess, T. Xu, R.A. Hernandez-Figueroa and M. Diaz-Lopez, Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fría Reservoir, Poza Rica-Altamira Field, Mexico, paper SPE 103869-PP, SPE Reservoir eva luation and Engineering, p. 1029-1045, 2008.
(13)Zhang, G., N. Spycher, E. Sonnenthal, C. Steefel, and T. Xu, Implementation of a Pitzer Activity Model into TOUGHREACT for modeling concentrated solutions, Nuclear Technology, v. 164, p. 180-195, 2008.
(14)Gherardi, F., T. Xu, and K. Pruess, Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir, Chemical Geology, v. 244, p. 103-129, 2007.
(15)Audigane, P., I. Gaus, I. Czernichowski-Lauriol, K. Pruess and T. Xu. Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner Site, American Journal of Science, v. 307, p. 974-1008, 2007.
(16)Xu, T., J. A. Apps, K. Pruess, and H. Yamamoto, Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chemical Geology, v. 242/3-4, p. 319-346, 2007.
(17)Randolph, A., W. Zhou, T. Xu, K. Pruess, B. Stromberg, Experimental calibration of a reactive-transport model of buffer cementation, Chinese Journal of Rock Mechanics and Engineering, v.25, p., 2006. 
(18)Xu, T., E.L. Sonnenthal, N. Spycher, and K. Pruess, TOUGHREACT - A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration, Computer & Geoscience, v. 32/2 p. 145-165, 2006.
(19)Sonnenthal, E., T. Xu, and G. Bodvarsson, Reply to “Commentary: Assessment of past infiltration fluxes through Yucca Mountain on the basis of the secondary mineral record—is it a viable methodology?”, by Y.V. Dublyansky and S.Z. Smirnov, Journal of Contaminant Hydrology, v. 77(3), p. 225-231, 2005.
(20)Xu, T., CO2 geological sequestration, China Encyclopedic Knowledge (a China popular science magazine), 307(2), 34-35, 2005. 
(21)Xu, T, J. A. Apps, and K. Pruess, Mineral sequestration of carbon dioxide in a sandstone-shale system, Chemical Geology, v. 217(3-4), p. 295-318, 2005. DOI information: 10.1016/j.chemgeo.2004.12.015, 2005.
(22)Kim, J., F.W. Schwartz, T. Xu, and J. Shi, Coupled processes of fluid flow, solute transport and geochemical reactions in reactive barriers, Vadose zone Journal, 2004(3), p. 867-874, 2004. 
(23)Xu, T, J. A. Apps, and K. Pruess, Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry, 19, 917-936, 2004.   
(24)Xu, T., Y. Ontoy, P. Molling, N. Spycher, M. Parini, and K. Pruess, Reactive transport modeling of injection well scaling and acidizing at Tiwi Field, Philippines, Geothermics, v. 33(4), p. 477-491, 2004. 
(25)Pruess, K., and T. Xu, Numerical Simulation of Reactive Flow in Hot Aquifers by Christoph Clauser (Ed.), Springer-Verlag, Berlin, Heidelberg, New York, Geothermics, 33, 213-215, 2004.     
(26)Todaka, N., C. Akasaka, T. Xu, and K. Pruess, Reactive geothermal transport                   simulations to study the formation mechanism of an impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan, Journal of Geophysical Research, v. 109, B05209, doi:10.1029/2003JB002792, 2004.   
(27)Pruess, K., J. García, T. Kovscek, C. Oldenburg, J. Rutqvist, C. Steefel, and T. Xu, Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2, Energy, v. 29, p. 1431-1444, 2004.
(28)Kiryukhin, A., T. Xu, K. Pruess, J. Apps, and I. Slovtsov, Thermal-hydrodynamic-chemical (THC) modeling based on geothermal field data, Geothermics, v. 33(3), p. 349-381, 2004. 
(29)Pruess, K., Xu, T., Apps, J., and García, J., Numerical modeling of aquifer disposal of CO2, Paper SPE-83695, SPE Journal, p. 49-60, 2003.     
(30)Xu, T, J. A. Apps, and K. Pruess, Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations, Journal of Geophysical Research, v. 108 (B2), 2071, doi:10.1029/2002JB001979, 2003. 
(31)Xu, T., E. Sonnenthal, and G. Bodvarsson, A reaction-transport model for calcite precipitation and eva luation of infiltration-percolation fluxes in unsaturated fractured rock, Journal of Contaminant Hydrology, v. 64, p. 113 - 127, 2003. 
(32)Xu, T., and K. Pruess, Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. Methodology, American Journal of Science, v. 301, p. 16-33, 2001.
(33)Xu, T., E. Sonnenthal, N. Spycher, K. Pruess, G. Brimhall, and J. Apps, Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 2. Applications to supergene copper enrichment and hydrothermal flows, American Journal of Science, v. 301, p. 34-59, 2001.     
(34)Xu, T., and Pruess, K., On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems, Journal of geophysical Research, v. 106(B2), p. 2121-2138, 2001.     
(35)Xu, T., S. P. White, K. Pruess, and G. H. Brimhall, Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems, Transport in porous media, v. 39, p. 25-56, 2000.     
(36)Xu, T., K. Pruess, and G. Brimhall. An improved equilibrium-kinetics speciation algorithm for redox reactions in variably saturated flow systems, Computers & Geosciences, v. 25(6), p. 655 -666, 1999. 
(37)Xu, T., J. Samper, C. Ayora, M. Manzano, and E. Custodio, Modeling of non-isothermal multi-component reactive transport in field-scale porous media flow system, Journal of Hydrology, v. 214, p. 144-164, 1999.

相关文章

Copyright (c) 2014 All Rights Reserved contact to QQ2931968428 contact@dixiashui.cn 京ICP证050897号